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Computational SNP Discovery in DNA
Sequence Data

Gabor T. Marth

1. Introduction

Both the quantity and the distribution of variations in DNA
sequence are the product of fundamental biological forces: random
genetic drift, demography, population history, recombination, spa-
tial heterogeneity of mutation rates, and various forms of selection.
In humans, single base-pair substitution-type sequence variations
occur with a frequency of approx 1 in 1.3 kb when two arbitrary
sequences are compared (1). This frequency increases with higher
sample size (2), i.e., we expect to see, on average, more single nucle-
otide polymorphisms (SNPs) when a higher number of individual
chromosomes are examined (3,4).

SNPs currently in the public repository (5) were discovered in
DNA sequence data of diverse sources, some already present in
sequence databases, but the majority of the data generated specifi-
cally for the purpose of SNP discovery. Nearly 100,000 SNPs in tran-
scribed regions were found by analyzing clusters of expressed
sequence tags (ESTs) (6–8), or by aligning ESTs to the human refer-
ence sequence (9). The three major sources of genomic SNPs were
sequences from restricted genome representation libraries (10), ran-
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dom shotgun reads aligned to genome sequence (1), and the overlap-
ping sections of the large-insert (mainly bacterial artificial chromo-
some, or BAC) clones sequenced for the construction of the human
reference genome (11–13). Most of these SNPs were detected in pair-
wise comparisons where one of the two samples was a genomic clone
sequence. Theory predicts (14), and experiments confirm, that shal-
low sampling results in an overrepresentation of common variations:
these common SNPs tend to be ancient variations, often present in all
or most human populations (15) and expected to be valuable for
detecting statistical association (16). For the same reason, many rare
polymorphisms with rare phenotypic effects are likely to be absent
from this set. The current collection of SNPs forms a dense, genome-
wide polymorphism map (1) intended as a starting point for regional
variation studies. An exhaustive survey of polymorphisms in a given
region of interest is likely to require significantly higher sample sizes.
Even so, the isolation of rare phenotypic mutations may only be pos-
sible by the crosscomparison between large samples of affected pa-
tients and those of controls.

Computational SNP discovery, in a general sense, refers to the
process of compiling and organizing DNA sequences that represent
orthologous regions in samples of multiple individuals, followed by
the identification of polymorphic sequence locations. The first step
typically involves a similarity search with the Basic Local Align-
ment Search Tool (BLAST) (17) to compile groups of sequences
that originate from the region under examination. This is followed
by the construction of a base-wise multiple alignment to determine
the precise, base-to-base correspondence of residues present in each
of the samples in a group. Finally, each position of the multiple
alignment is scanned for nucleotide mismatches.

Some of the most serious difficulties of sequence organization
stems from the repetitive nature of the DNA observed in many
organisms. It is well known that nearly half of the human genome is
made up of high copy-number repetitive elements (18,19). In addi-
tion, many intra- and interchromosomal duplication exist, a large
number of them yet uncharacterized. Similar to members of multi-
gene families, these duplicated (paralogous) genomic regions may
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exhibit extremely high levels of sequence similarity (18), sometimes
over 99.5%, and can extend over hundreds of kilobases. Failure to
distinguish between sequences from different copies of duplicated
regions results in false SNP predictions that represent paralogous
sequence differences rather than true polymorphisms.

The construction of correct base-wise multiple alignments is a
difficult problem because of its computational complexity.
Sequences under consideration are generally of different length ren-
dering global sequence alignment algorithms such as CLUSTALW
(20) rarely applicable. Expressed sequences (ESTs or more or less
complete gene sequences) require local alignment techniques that
are unperturbed by exon-intron punctuation and alternatively
spliced sequence variants.

Once a multiple alignment is constructed, nucleotide differences
among individual sequences can be analyzed. Owing to the pres-
ence of sequencing errors, not every nucleotide position with
mismatches automatically implies a polymorphic site. Although it
is impossible to decide which is the case with certainty, the success
of SNP detection ultimately depends on how well one is able to
discriminate true polymorphisms from likely sequencing errors.
This is usually accomplished by statistical considerations that take
advantage of measures of sequence accuracy (21,22) accompany-
ing the analyzed sequences. The result, ideally, is a set of candidate
SNPs, each with an associated SNP score that indicates the confi-
dence of the prediction. Accurate confidence values can be
extremely useful for the experimentalist in selecting which SNPs to
use in a study or for further characterization, and enables one to use
the highest number of candidates within the bounds of an accept-
able false positive rate.

2. Materials

Sequences used in SNP analysis come from diverse sources. From
the viewpoint of sequence accuracy, they can be categorized as
either single-pass sequence reads or consensus sequences that result
from multipass, redundant sequencing of the same underlying DNA.
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The overall sequencing error rate of single-pass sequences is in the
1%-range (21–23), an order of magnitude higher than the average
polymorphism rate (roughly 0.1%). The error rate is typically much
higher at the beginning and the end of a read (21,22). Clusters of
sequencing errors are also common; the location of these is highly
dependent on specific base combinations, as well as the sequencing
chemistry used. For detecting sequence variations, even marginally
accurate data can be useful as long as regions of low accuracy nucle-
otides can be avoided. The most widely used base-calling program,
PHRED (21,22) associates a base quality value to each called nucle-
otide. This base quality value, Q, is related to the likelihood that the
nucleotide in question was determined erroneously: Q = –10
log10(Perror). Although different sequencing chemistries pose dif-
ferent challenges to base calling, tests involving large data sets have
demonstrated that the quality value produced by PHRED is a very
good approximation of actual base-calling error rates (21,22). Using
base quality values, mismatches between low-quality nucleotides
can be discarded as likely sequencing errors. Because consensus
sequences are the product of multiple sequence reads, they are gen-
erally of higher accuracy. Exceptions to this rule are regions where
the underlying read coverage is low, and/or regions where all
underlying reads are of very low quality. Recognizing this problem,
sequence assemblers (computer programs that create consensus
sequences) also provide base quality values for the consensus sequence
by combining quality scores of the underlying reads (24,25). The
following subsections describe the most commonly used sequence
sources used in SNP discovery.

2.1. STS Sequences

Sequence-tagged site (STS) sequences, amplified and sequenced
in multiple individuals, were used in the first large-scale efforts to
catalog variations at the genome scale (26). One of the main advan-
tages of this strategy was that PCR primers, optimized during STS
development, were readily available for use. If starting material for
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the amplification is genomic DNA, these sequences represent the
superposition of both copies of a chromosome within an individual.
As a result, the sequence may contain nucleotide ambiguities that
correspond to heterozygous positions in the individual. Base-calling
algorithms trained for homozygous reads will assign a low base
quality value to whichever nucleotide is called, rendering base
quality value-based SNP detection algorithms ineffective for these
reads. Specialized algorithms (31) have been designed to deal with
heterozygote detection, as discussed next.

2.2. EST Sequences

Expressed Sequence Tag (EST) Reads represent the richest source
of SNPs in transcribed regions (6–8,27,28) to date. The majority of
ESTs are single-pass reads, often from tissue-specific cDNA librar-
ies (29,30). Because a single EST read may contain several exons,
special care must be taken when these reads are aligned to genomic
sequences. An additional difficulty is the alignment of ESTs repre-
senting alternative splice-variants of a single gene.

2.3. Small Insert Clone Sequences

2.3.1. Sequences from Reduced Representation Libraries

Size-Selected Restriction Fragments recognized by specific
restriction enzymes are quasirandomly distributed in genomic DNA.
The average distance between neighboring restriction sites (restric-
tion fragment length) is a function of the length of the recognition
sequence. A reduced, quasirandom representation of the genome
can be achieved by first constructing a library of cloned restriction
fragments, followed by size-selection to exclude fragments outside
a desired length range. The number of different fragments (com-
plexity) present in the library can be precalculated for any given
length range. Inversely, library complexity can be controlled by
appropriate selection of the upper and lower size limits (10).
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2.3.2. Sequences from Random Genomic Shotgun Libraries

Random Genomic Subclone Reads are sequenced from DNA
libraries with a quasirandom, short-insert subclone representation
of the entire genome (whole-genome shotgun libraries). Because
these reads deliver a random sampling of the whole genome, they
are well-suited for genome-wide SNP discovery (1,12).

2.4. Large-Insert Genomic Clone Consensus Sequences

Recent large-scale, genome-wide SNP discovery projects (1,11–
13,32) take advantage of the public human reference sequence built
as a tiling path through partially overlapping, large-insert genomic
clones (18,23). The sequence of these clones was determined with a
local shotgun strategy. By cloning random fragments into a suitable
sequencing vector, a subclone library is created for each clone. This
library is then extensively sequenced until reaching a desired, three-
to tenfold, quasirandom read coverage. The DNA sequence of the
large-insert clone is reconstructed by assembling the shotgun reads
with computer programs (24). At this stage, there are still several
gaps in the sequence, although overall accuracy is high (approx
99.9%). Gap closure and clean up of regions of low-quality
sequence requires considerable manual effort (23) known as “fin-
ishing.” Finished or “base-perfect” sequence is assumed at least
99.99% accurate (18).

2.5. Assembled Whole-Genome Shotgun Read
Consensus Sequences

Similar in nature to genomic clone sequences, these consensus
sequences are the result of assembling a large number of genome-
wide shotgun reads, possibly from libraries representing multiple
individuals. Over two million human SNP candidates were discov-
ered in the private sector by the analysis of multi-individual reads that
provided the raw material for the construction of a human genome
reference sequence produced by the whole-genome sequence assem-
bly method (19).
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3. Methods

3.1. Published Methods of SNP Discovery

Methods of SNP mining have gone through a rapid evolution dur-
ing the past few years. The first approaches relied on visual com-
parison of sequence traces from multiple individuals (33). Although
manual comparison of a small number of sequence traces is fea-
sible, standard accuracy criteria are hard to establish, and this
method does not scale well for multiple sequence traces and many
polymorphic locations. The efficiency of visual inspection is
increased when it is performed in the context of a multiple sequence
alignment (27,34,35), aided by computer programs that are capable
of displaying the alignments and provide tools for simultaneous
viewing of sequence traces at a given locus of the multiple align-
ment (36). Computer-aided prefiltering followed by manual exami-
nation of sequence traces (11,32) was used in the analysis of
overlapping regions of genomic clone sequences to detect candi-
date SNPs as sequence differences between reads representing the
two overlapping clones. These early methods were instrumental in
demonstrating the value of extant sequences, sequenced as part of
the Human Genome Project, for the discovery of DNA sequence
variations. Although visual inspection remains an integral part of
software testing and tuning, demands for fast and reliable SNP
detection in large data sets have necessitated the development of
automated, computational methods of SNP discovery.

The first generation of these methods was designed to enable min-
ing the public EST database (37), and relied, in part, on tools previ-
ously developed to aid the automation of DNA sequencing (23).
SNP detection was performed by software implementing heuristic
considerations. Picoult-Newberg et al. (27) used the genome frag-
ment assembler PHRAP to cluster and multiply align ESTs from 19
cDNA libraries. The use of the genome assembler implied that
alternatively spliced ESTs were not necessarily included in a single
cluster. There was no attempt to distinguish between closely related
members of gene families (paralogs). SNP detection was carried
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out through the successive application of several filters to discard
SNP candidates in low-quality regions, followed by manual review.
Mainly as the result of conservative heuristics, this method only
found a small fraction, 850 SNP candidates in several hundreds of
thousands of sequences analyzed. Buetow et al. (6) used UNIGENE
(38), a collection of precomputed EST clusters as a starting point.
ESTs within each cluster were multiply aligned with PHRAP (24).
Identification of paralogous subgroups within clusters was done by
constructing phylogenetic trees of all cluster members and analyz-
ing the resulting tree topology. Again, SNP candidates were identi-
fied by heuristic methods to distinguish between true sequence
differences and sequencing errors. This method yielded over 3,000
high-confidence candidates in 8,000 UNIGENE clusters that con-
tained at least 10 sequence members. Unfortunately, the great
majority of clusters contained significantly fewer sequences that
could not be effectively analyzed with these methods.

The development of a second generation of tools was prompted
by the needs of genome-scale projects of SNP discovery. The large
amount of data generated by The SNP Consortium (TSC) (1) has
spurred the development of several SNP discovery tools. In the ini-
tial phase, the TSC employed a molecular strategy called restricted
genome representation (RRS), which involves the sequencing of
size-selected restriction fragment libraries from multiple individu-
als (10). For example, the full digestion by a given restriction
enzyme may produce 20,000 genomic fragments in the 450–550-bp
length range. After digestion of the genomic DNA of each of the 24
individuals, followed by size-selection, the restriction fragment
libraries are pooled. When a collection of such random fragments is
sequenced to appreciable redundancy (say, 60,000–80,000 reads),
the sequence of many of the fragments will be available from more
than one individual. These redundant sequences are a suitable sub-
strate for SNP analysis. The analysis of data of this type is similar to
that of EST sequences. First, one must cluster the sequence reads to
delineate groups of identical fragments. To avoid grouping
sequences based on similarity between known human repeats they
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contain, the reads are screened and repetitive sequences are masked
(39). Pairs of similar sequences are determined by a full pair-wise
similarity search between all reads from a given library. Pairs are
merged into groups (cliques) by single-linkage, transitive cluster-
ing. Some groups may still be composed of sequences that represent
low-copy repeats (paralogous regions) not present in the
REPEATMASKER repeat-sequence library. One of the strategies
to identify these potential paralogs is to compare cluster depth (the
number of sequences in the group) to expectations obtained from
Poisson sampling with the given redundancy (10). Groups that sur-
vive these filtering steps are analyzed for SNPs. One of the methods
used is based on establishing a quality standard for each of the
aligned nucleotides within each sequence, taking into account the
base quality value of the nucleotide in question as well as the qual-
ity of the neighboring nucleotides (10; Neighborhood Quality Stan-
dard, or NQS). Instead of the full multiple alignment, the detection
of SNPs was based on the analysis of all possible read pairs within a
given group: mismatches between pairs of aligned nucleotides meet-
ing the NQS were extracted as SNP candidates.

As the initial, draft sequencing of the human genome neared
completion, it was possible to switch towards a more accurate, more
efficient strategy. As the majority of the genome was available as
genome reference sequence (18), sequencing of whole-genome, ran-
dom, subclone libraries would provide sequence coverage that could
be compared to the reference sequence. This reduced the time and
cost associated with the creation of restricted representation
subclone libraries (10,18). The informatics problems associated
with this strategy were also reduced in complexity. It was now pos-
sible to use a single similarity search to place the fragments on the
genome reference. By the same procedure, it was also possible to
ascertain alternative (paralogous) locations. This is the strategy
employed by the algorithm SSAHASNP (40), which combines a
fast search algorithm of short-sequence fragments against the
genome with a SNP detection algorithm that uses the NQS (10) to
find SNP candidates in pair-wise comparisons of sequence frag-
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ments against the genome. As a fast tool capable of efficient pro-
cessing of large data sets, SSAHASNP was used in the discovery of
a large fraction of SNPs in the TSC data (1).

As we can see from the previous discussion, the molecular sub-
strates involved in different projects of sequence-based SNP dis-
covery represent data of varied types and sequence sources. The
result is a multitude of different scenarios in terms of alignment
depth, what the individual sequences represent, overall sequence
accuracy, and so on. The methods of SNP discovery we have dis-
cussed so far are generally quite successful in operating within the
specific sequence context for which they were developed. There
was, however, a growing need for general tools of SNP discovery
(41) that are able to analyze sequences both in shallow or in deep
coverage, sequences of different sources simultaneously, without
human review, and assign a realistic measure of confidence in the
SNP candidates, without regard to the source and overall accuracy
of these sequences. To achieve the flexibility this required, it was
necessary to develop mathematically rigorous, statistical methods
of SNP detection. Here we will describe POLYBAYES (9), one of
the first general-purpose SNP analysis tools available for use today.

POLYBAYES is composed of three parts, each independent of
the others: an anchored multiple alignment algorithm, a paralog dis-
crimination algorithm, and the SNP detection algorithm. The
anchored alignment algorithm assumes the availability of a genomic
reference sequence (such as the Genome Assembly [18] for the
Human Genome). Short-sequence fragments are organized by align-
ing them to the reference sequence. This algorithm works well in the
case of cDNA (EST) sequences even in the presence of alternative
splicing, as individual exons are aligned while leaving gaps for
the introns or spliced-out exons (see Fig. 1). The paralog discrimi-
nation algorithm examines the alignment of the fragment to the
genomic reference, and decides, on the basis of the sequence qual-
ity information, whether the number of discrepancies observed in
the alignment is statistically consistent with the number expected
from polymorphisms plus sequencing errors. If the number of
observed discrepancies greatly exceeds the number expected, the
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sequence fragment is flagged as a likely paralog, and is discarded
from further analysis (see Fig. 2).

The SNP detection algorithm employed by POLYBAYES calcu-
lates the probability that discrepancies at the analyzed location rep-
resent true sequence variation as opposed to sequencing error. As a

Fig. 1. Alignment of EST reads to genomic anchor sequence (viewed
in the CONSED sequence viewer-editor program). ESTs in this align-
ment represent two alternative splice variants, both correctly aligned to
the genome sequence.

Fig. 2. Example of a paralogous EST sequence (marked with blue bar)
in alignment with sequences likely to originate from the given genomic
locus. The paralog is detected and tagged automatically by the software.
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Bayesian algorithm, it combines a priori (prior) knowledge about
the sequence context with the specific, observed data represented
by the sequences under examination. Typically, such prior knowl-
edge includes an approximate average polymorphism rate in the
region, and the expected ratio between transitions and transversions.
Additional information may include the knowledge of the number
of different individuals represented by the sequences within the
alignment, or the degree of their relatedness. Often, multiple
sequence reads (e.g., forward-reverse read pairs) may originate from
a single DNA clone template; in such cases, any mismatch between
these reads is a priori identified as a sequencing error. The role of
sequence accuracy, as expressed by the base quality values in the
individual sequences, is quite intuitive: a mismatch between nucle-
otides of low accuracy is more likely the result of sequencing error
than that of true variation. On the other hand, if a mismatch occurs
between nucleotides with high base quality values, the likelihood of
a true polymorphism is higher. Alignment depth (the number of
sequences contributing to the site under examination) is similarly
important: a candidate A/G polymorphism between only two
sequences may be less convincing than in a situation where, say 30
sequences contribute an A and another 30 sequences contribute a G
residue to the alignment slice. Finally, the effect of base composi-
tional biases may be significant in extremely A/T or G/C rich
organisms, and is taken into account in the computations. The algo-
rithm can be summarized as follows: At a given slice of N aligned
nucleotide sequences, each sequence can represent one of the four
DNA nucleotides, giving rise to a total of 4N possible permutations
within the slice. The POLYBAYES algorithm calculates the Baye-
sian posterior probability for all 4N possible permutations taking
into account the prior expectations, the base quality values, local
base composition, and the alignment depth. The sum of the prob-
abilities for all polymorphic permutations (i.e., permutations
whereby not all N sequences are in agreement) is the likelihood that
the sequences at the given location harbor a SNP. Because the algo-
rithm does not depend on the source of the quality values (whether
generated by a base caller such as PHRED, or by a fragment assem-
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bly program such as PHRAP) it is possible to objectively and simul-
taneously evaluate all available data present in the alignment, with-
out regard to sequence source or restrictions on data quality. For
each site of the alignment, the algorithm outputs the probability that
the site is polymorphic. These probability values were shown to
accurately estimate the validation rate of candidate SNPs in various
mining applications (1,9,15). This is desirable because realistic
estimates for the true positive rate allow one to use the highest num-
ber of SNP candidates within an acceptable false positive rate. The
POLYBAYES software is compatible with the PHRED/PHRAP/
CONSED file structure, is capable of analyzing multiple alignments
created with PHRAP, and the output, including markup information
such as paralog tags and candidate SNP sites, is directly viewable
within CONSED (Figs.  2 and 3). An alternative statistical formula-
tion (8) developed to analyze EST clusters produces a log-odds
(LOD) score to rank SNP candidates based on sequence accuracy,
the quality of the alignment, prior polymorphism rate, and by evalu-
ating adherence to the rules of Mendelian segregation of alleles
within individual cDNA libraries.

There are two additional cases of practical importance that the
algorithms described earlier were not designed to work with
directly. In many situations, the DNA template that is available for
analysis is double stranded, genomic DNA of an individual, or
sometimes a pool of multiple individuals. The first is the case when
a known region is assayed from the genomic DNA of multiple indi-
viduals (34,35), giving rise to sequence traces that contain heterozy-
gous nucleotides. An example of a multi-individual DNA pool is
one constructed to obtain population-specific estimates of allele fre-
quency of known polymorphisms (42). PCR products obtained from
such starting material represent more than a single, unique strand of
DNA. When these products are sequenced, polymorphic locations
between different strands of DNA appear as base ambiguities in the
sequence trace (Fig. 4). The automation of heterozygote detection
motivated the development of POLYPHRED (31), a computer pro-
gram (43) that examines numerical characteristics of sequence
traces such as drop in peak-height, ratio of a second peak under the
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Fig. 3. Candidate SNP site. The SNP (alleles A/G) is evident
within members of one of the two alternatively spliced forms of
ESTs aligned to the genomic anchor sequence at this location. The
tag above, generated automatically by the detection software
POLYBAYES, shows the most likely allele combination at the site,
together with the probability of that variation.

primary peak, and overall sequence quality in the neighborhood of
the analyzed nucleotide position. POLYHRED integrates seam-
lessly with the University of Washington PHRED/PHRAP/
CONSED genome analysis software package. Although both
POLYPHRED, and other specialized, heuristic approaches has been
tested for allele frequency estimation in pooled sequencing, reliable
computer algorithms of frequency estimation are not yet available.

Another topic of practical importance is the detection of short
insertions and deletions (INDELs). Polymorphisms of this type are
also commonly referred to as DIPs (deletion-insertion polymorph-
isms). The main difficulty of detecting DIPs is the fact that current,
base-wise measures of sequence accuracy provide no direct



Computational SNP Discovery 99

estimates of insertion or deletion type sequencing errors. The base
quality value, accompanying a given nucleotide, expresses the like-
lihood that the nucleotide was called in error, but it is not possible to
separate the likelihood of substitution-type sequencing error from
the likelihood that a nonexistent nucleotide was artifactually
inserted by the base caller. Similarly, there is no direct measure of
the likelihood that between two called, neighboring nucleotides
there are additional bases in the sequencing template that were erro-
neously omitted and therefore represent deletion-type errors. In the
absence of sequencing error estimates, it is difficult to formulate
rigorous models of insertion-deletion type polymorphisms. A heu-
ristic approach employed by POLYBAYES for DIP detection is
based on the assumptions that a higher base quality value corre-
sponds to a decreased chance that the called nucleotide is, in fact, an
artifactual insertion, and that the likelihood of deleted nucleotides

Fig. 4. Heterozygote detection with the POLYPHRED program. Mul-
tiple alignment with the site of an SNP marked up with POLYPHRED
(left). Sequence traces of a homozygous A/A, a heterozygous A/G, and a
homozygous G/G individual (right).
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between two high-quality called bases is low. Taking into account
the base quality value of the nucleotides neighboring a candidate
deletion, as well as the base quality values of the corresponding
candidate insertion in another aligned sequence, a heuristic DIP like-
lihood is calculated. This likelihood was used to detect DIPs in over-
lapping regions of large-insert clones of the Human Genome
Assembly. Validation rate for DIPs that were at least two base pairs
long was about 70%; the validation rate for single base-pair inser-
tions-deletions was significantly lower, especially for base-number
differences in mono-nucleotide runs.

3.2. Computational Aspects of SNP Discovery

The majority of software packages for automated SNP discovery
were developed to run under the UNIX operating system. Part of
the reason for this is the availability of powerful and flexible pro-
gramming tools that UNIX provides for the software developer. In
addition, many of the SNP discovery tools available today were
written in a way that enables their integration into existing genome
analysis packages such as the PHRED/PHRAP/CONSED system,
developed at the University of Washington under UNIX. Hardware
requirements for SNP mining depend greatly on the scope of the
task tackled. Searching for SNPs in specific, short (up to 100–150 kb)
regions of the genome, in up to a few hundred sequences, is well
within the capabilities of a conventional UNIX workstation (or a
computer running the user-friendly LINUX operating system that
can be installed on a personal computer with relative ease). Genome-
wide SNP mining projects typically require server-class machines,
and access to several hundred gigabytes of data storage, especially
if intermediate steps of the mining procedure are tracked and results
are recorded in a database.

Unfortunately, there is no official standard data exchange format
for sequence multiple alignments, or SNP markup information.
Many of the SNP discovery tools currently in use expect input and
produce output in file formats specific to the program. In these cases,
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data translation between different tools is achieved via custom
scripts. The closest to a de facto standard is the PHRED/PHRAP/
CONSED (24) file structure and software architecture developed at
the University of Washington that is widely used in sequencing
laboratories worldwide. Given that several of the main SNP analy-
sis tools, including POLYPHRED and POLYBAYES, were built to
integrate within this structure, it is worthwhile to briefly summarize
the University of Washington package standards for representing
SNP information.

The main directory of the file architecture contains four
subdirectories in which all relevant data is organized. Sequence
traces reside in the subdirectory chromat_dir. When the base-
calling algorithm PHRED interprets a trace, it creates a sequence
analysis file in the PHD format, and writes it into the subdirectory
phd_dir. In addition to header information such as sequence name,
read chemistry, and template identifier, the PHD format file con-
tains three important pieces of information for each called base: the
called DNA residue, the corresponding base quality value describ-
ing the accuracy of the call, and the position of the called nucleotide
relative to the sequence trace. The PHD file may also contain per-
manent additional sequence information or tags attached to sections
of the read (such as the region of an annotated repeat, or cloning
vector sequence). The pre-requisite of using POLYPHRED is the
presence of an additional trace analysis file that contains detailed
information about the trace, at the location of the called nucleotide.
This file is the POLY format trace analysis file, located in the
subdirectory poly_dir. Finally, all downstream analysis files are
kept in the fourth subdirectory edit_dir. Perhaps the most com-
monly used file in this directory is the ACE format sequence assem-
bly, or multiple alignment file. This file format was designed as an
interchange format between the PHRAP sequence assembly pro-
gram and the CONSED sequence editor. ACE files are versioned
and sequence edits performed within CONSED are saved as con-
secutive versions. The SNP detection program POLYPHRED takes
an ace format multiple alignment file, and adds markup information



102 Marth

regarding the location of heterozygous trace positions. These tags
are visible when the alignment is viewed with CONSED, enabling
rapid manual review. POLYBAYES operates in one of two modes.
The first mode is the analysis of a pre-existing multiple alignment,
supplied in the ACE format. In this case, the anchored multiple
alignment step is bypassed, and an ACE format output file is cre-
ated that contains the results of paralog identification and SNP
detection, again, as tags viewable from within CONSED. In the
second mode of operation one utilizes the anchored alignment capa-
bility of POLYBAYES. In this case, one starts out with FASTA
format files representing the DNA sequence and the accompanying
base quality values for the genomic anchor sequence, as well as
the cluster member sequences (for a description of the FASTA
format see URL: http://www.ncbi.nlm.nih.gov/BLAST/fasta.html).
CROSS_MATCH (24), a pair-wise, dynamic programming align-
ment algorithm is run between each member sequence and the
anchor. The sequences, together with the pair-wise alignmentsare
supplied to POLYBAYES. The program multiply aligns the mem-
ber sequences, performs the paralog filtering and the SNPdetection
step, and produces a new ACE format output file for the viewing of
the anchored multiple alignment and SNP analysis results.

3.3. SNP Discovery Protocol

Given the diversity of sequence data that can be used to detect
polymorphic sites within an organism, it is impossible to prescribe a
single protocol that works in every situation. In general, the mining
procedure will contain the following steps: data organization, the cre-
ation of a base-wise multiple alignment, filtering of paralogous
sequences (or cluster refinement), followed by the detection of SNPs
in slices of the multiple alignment. In this final section of this chap-
ter, we will give two different examples that typify the usual steps of
SNP mining. The majority of mining applications can be success-
fully completed by customizing and combining these steps.
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3.3.1. SNP Discovery in EST Sequences

In the first scenario, in a screen against a cDNA library one pulls
out a clone sequence that contains a gene of interest. The cDNA is
an already sequenced clone, the corresponding EST is in the public
database, dbEST (37) (URL: http://www.ncbi.nlm.nih.gov/dbEST).
The goal is to explore single base-pair variations within the gene.
The first step towards this goal is to find all SNPs in those tran-
scribed sequences of the gene that are available in public sequence
databases. One proceeds as follows:

1. Find the location of the gene in the human genome from which the
EST was expressed. Go to the NCBI (National Center for Biotech-
nology Information) web site (URL: http://www.ncbi.nlm.nih.gov)
and follow the Map Viewer link. Use the search facility on this page
to find the genomic location of the EST, pre-computed by the NCBI.
Perform the search using the accession number of the EST. Make
sure that you set the “Display Settings” to include the “GenBank”
view. Click on the genome clone accession that overlaps the EST,
and download the sequence in FASTA format. This sequence will
act as the genomic anchor sequence for the ESTs to be analyzed.

2. Find all other ESTs in dbEST with significant sequence similarity to
the original EST sequence. Perform the similarity search from the
NCBI (National Center for Biotechnology Information) website
(URL: http://www.ncbi.nlm.nih.gov/BLAST). Choose the “Standard
nucleotide-nucleotide BLAST” option. Type the accession number
of the EST in the “Search” field. Choose “est_human” as the data-
base to search against. Once the search is done, format the output as
“Simple text,” and parse out the accession list of ESTs from the list
of hitting sequences (see Note 1).

3. Retrieve EST sequence traces. In the near future, EST trace retrieval
will be possible from the trace repository (URL: http://
www.ncbi.nlm.nih.gov/Traces) that is under construction at the
NCBI. Currently, EST sequence traces can be downloaded from the
Washington University ftp site: (URL: ftp://genome.wustl.edu/pub/
gsc1/est) for ESTs produced there. Searching is done via the local
EST names. Download all ESTs for which traces can be found at this
site (see Note 2).
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4. Process the sequence traces with the PHRED base-calling program.
Invoke PHRED with the command line parameters that produce files
necessary for downstream processing in the University of Washington
PHRED/PHRAP/CONSED architecture (URL: http://www.phrap.org).
Make sure that PHD format sequence files are created in the
“phd_dir” subdirectory, by specifying the location of this directory
with the “-cd” option. Use the utility program PHD2FASTA (pro-
vided with CONSED) to produce a FASTA format file of the DNA
sequences (“-os” option) of the ESTs file. Also, produce a FASTA
format file for the accompanying base quality values (“-oq” option),
and one for the list of base positions that specify the location of each
called nucleotide relative to the sequence trace (“-ob” option). The
DNA sequence of the ESTs will be used in the next step, as the mem-
bers of the cluster (group) of expressed sequences to analyze for
polymorphic sites.

5. Create a multiple alignment of the EST sequences with the anchored
alignment algorithm implemented within POLYBAYES (instruc-
tions at the POLYBAYES web site, URL: http://genome.wustl.edu/
gsc/polybayes). As the anchor sequence, use the genomic clone
sequence from step 1. Use the CROSS_MATCH dynamic alignment
program to compute the initial pair-wise alignments between each of
the ESTs and the genomic anchor sequence (CROSS_MATCH is
distributed as part of the PHRAP software package [24]). As cluster
member sequences, use the ESTs obtained in steps 2–4. Figure 1
shows a section of a sample multiple alignment, viewed with the
CONSED (36) sequence viewer-editor program. Observe that, in this
case, the ESTs are divided into two groups of alternative splice forms.

6. Likely paralogous sequences are identified with the in-built paralog-
filtering feature of POLYBAYES. This feature is invoked by the
“-filterParalogs” command line option (additional relevant argu-
ments explained in the online documentation available at the
POLYBAYES web site). Figure 2 shows a different section of
the multiple alignment produced in the previous step. Observe that
there are several high-quality mismatches between the genomic
anchor sequence and EST marked with the blue tag. This sequence is
considered a sequence paralog, and is automatically tagged by the
filtering algorithm. The paralogous sequence is removed from con-
sideration in any further analysis.

7. The multiple alignment is scanned for polymorphic sites. At each
site, the slice of the alignment composed of nucleotides contributed
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by every sequence that was locally aligned, is examined for mis-
matches. The Bayesian SNP detection algorithm calculates the prob-
ability that such mismatches are the result of true polymorphism as
opposed to sequencing error. Likely polymorphic sites are recorded
as SNP candidates. The SNP detection feature is enabled with the
“-screenSnps” option (additional parameters such as setting prior
polymorphism rates or the SNP probability threshold, and enabling
pre-screening steps, are explained in online the documentation). Fig-
ure 3 shows the site of a SNP candidate in the multiple alignment in
the previous example. This SNP is found within members of one
alternatively spliced group of EST sequences, and is automatically
tagged by the SNP detection algorithm implemented within
POLYBAYES (see Note 3).

A similar procedure is applicable for a wide range of scenarios
where sequence fragments (e.g., ESTs, random genomic shotgun
reads, BAC-end reads, sequenced restriction fragments, etc.) are
organized with the help of genome reference sequence, and com-
pared both against each other, and/or to the reference sequence in
search of polymorphic sites.

3.3.2. SNP Discovery in PCR Product Sequences

The second scenario is a genotyping application. The goal is to
assay a set of individuals for the presence of polymorphic sites in a
small region of interest (such as an exon of a gene). A primer pair is
available to amplify the region from genomic DNA. The region is
amplified from each individual, and the amplicon sequenced. When-
ever an individual is heterozygous for a given allele, the sequence
shows an ambiguous (heterozygous) peak. Use POLYPHRED, a
software package specifically developed for heterozygote detection,
to identify heterozygous positions within sequence traces. The pro-
cedure is as follows:

1. Process the sequence traces, each representing the double-stranded,
genomic DNA of a single individual, with the PHRED base-calling
program. This time, in addition to the trace files and the PHD format
sequence files central to the CONSED file structure, also create
POLY format trace analysis files. This is done by invoking PHRED
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with the “-dd” command line option to specify the “poly_dir”
subdirectory, within the CONSED structure) where these files are to
be written. At the end of this step, a POLY file is present for each of
the sequence traces, containing detailed numeric information about
the trace characteristics at the position of each called nucleotide.

2. Create a multiple alignment of the sequences representing each of
the genotyped individuals. Use the PHRAP fragment assembly pro-
gram (24) for this purpose. To enable further analysis of the multiple
alignment, invoke PHRAP with the “-new_ace” command line
option. This will cause the program to produce an ACE format out-
put file that is suitable for direct analysis by the POLYPHRED pro-
gram. The ACE format output file can also be directly loaded into
the viewer-editor program CONSED for visual review of the mul-
tiple alignment.

3. Run POLYPHRED on the multiple alignment to detect polymorphic
sites. Using the “-ace” option, specify the “ACE” format PHRAP
output file created in the previous step when invoking
POLYPHRED. The program analyzes the multiple alignment and
tags the sites of candidate SNPs, as identified by likely heterozygous
peaks within sequence traces. Figure 4 shows a section of a multiple
alignment containing the site of a SNP, together with examples of
sequence traces representing individuals homozygous for each of the
two alleles, and a heterozygote.

4. Notes

1. To facilitate the retrieval of the corresponding sequence traces, make
a list of local EST read names available in the header information for
each EST.

2. The following URL: http://genome.wustl.edu/est/est_search/
ftp_guide.html contains detailed instructions.

3. Additional information is provided in the output files produced by
the program (for more detail, see the online documentation).
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